Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2025 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 7: Estudio de Funciones

2. Encuentre, si las hay, las ecuaciones de las asíntotas verticales, horizontales y oblicuas (tanto para x+x \rightarrow +\infty como para xx \rightarrow -\infty) de las siguientes funciones. Localice en un dibujo, la posición del gráfico de la función con respecto a las asíntotas halladas
c) f(x)=senxxf(x)=\frac{\operatorname{sen} x}{x}

Respuesta

Asíntotas verticales

Como el dominio de ff es R{0}\mathbb{R} - \{0\}, entonces x=0x=0 es nuestro candidato a asíntota vertical. Para ver si efectivamente lo es, tomamos límite cuando xx tiende a 00.  

limx0sin(x)x=1\lim_{x \rightarrow 0} \frac{\sin(x)}{x} = 1

Si viniste haciendo la Práctica 44, te acordarás del bendito "límite especial" jajaja, y sino este límite se justifica enseguida por L'Hopital que da 11 (de hecho es el ejemplo que usé en la clase de L'Hopital! 😅) 

Por lo tanto, ff no tiene asíntota vertical en x=0x=0.

Asíntotas horizontales

Para estudiar si hay asíntotas horizontales, tenemos que tomar límite cuando xx tiende a ±\pm \infty

limx±sin(x)x=0\lim_{x \rightarrow \pm\infty} \frac{\sin(x)}{x} = 0

(Este límite da cero por "Cero por acotada")

Por lo tanto, ff tiene una asíntota horizontal en y=0y = 0 tanto en ++ como en -\infty

Como ya tenemos asíntotas horizontales no es posible tener oblicuas, así que no las estudiamos.

Aclaración: Nosotrxs por lo general nos imaginamos a las asíntotas como una recta a la cual la función siempre se acerca pero nunca la toca. Eso es una manera de explicarlo que al principio es bastante intuitiva y nos da una idea de asíntota, pero no es del todo cierta porque si, a veces la función puede tocar a la asíntota mientras se acerca a ella 😱 Te propongo que grafiques esta función en GeoGebra y te fijes qué está haciendo la función alrededor de la asíntota y=0y = 0 ¿La recontra toca, no? De hecho, infinitas veces jajaja... Esta función se va acercando a la asíntota y=0y=0 oscilando alrededor de esa recta, no por eso deja de ser asíntota horizontal (porque si bien oscila, cada vez lo hace acercándose más y más)
Reportar problema
ExaComunidad
Iniciá sesión o Registrate para dejar tu comentario.